Markers of capacity to utilize fatty acids in human skeletal muscle: relation to insulin resistance and obesity and effects of weight loss.

نویسندگان

  • J A Simoneau
  • J H Veerkamp
  • L P Turcotte
  • D E Kelley
چکیده

A number of biochemical defects have been identified in glucose metabolism within skeletal muscle in obesity, and positive effects of weight loss on insulin resistance are also well established. Less is known about the capacity of skeletal muscle for the metabolism of fatty acids in obesity-related insulin resistance and of the effects of weight loss, though it is evident that muscle contains increased triglyceride. The current study was therefore undertaken to profile markers of human skeletal muscle for fatty acid metabolism in relation to obesity, in relation to the phenotype of insulin-resistant glucose metabolism, and to examine the effects of weight loss. Fifty-five men and women, lean and obese, with normal glucose tolerance underwent percutaneous biopsy of vastus lateralis skeletal muscle for determination of HADH, CPT, heparin-releasable (Hr) and tissue-extractable (Ext) LPL, CS, COX, PFK, and GAPDH enzyme activities, and content of cytosolic and plasma membrane FABP. Insulin sensitivity was measured using the euglycemic clamp method. DEXA was used to measure FM and FFM. In skeletal muscle of obese individuals, CPT, CS, and COX activities were lower while, conversely, they had a higher or similar content of FABP(C) and FABP(PM) than in lean individuals. Hr and Ext LPL activities were similar in both groups. In multivariate and simple regression analyses, there were significant correlations between insulin resistance and several markers of FA metabolism, notably, CPT and FABP(PM). These data suggest that in obesity-related insulin resistance, the metabolic capacity of skeletal muscle appears to be organized toward fat esterification rather than oxidation and that dietary-induced weight loss does not correct this disposition.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Exercise with weight loss improves adipose tissue and skeletal muscle markers of fatty acid metabolism in postmenopausal women

OBJECTIVE The effects of 6-month weight loss (WL) versus aerobic exercise training (AEX)+WL on fat and skeletal muscle markers of fatty acid metabolism were determined in normal (NGT) and impaired (IGT) glucose tolerant African-American and Caucasian postmenopausal women with overweight/obesity. METHODS Fat (gluteal and abdominal) lipoprotein lipase (LPL), skeletal muscle LPL, acyl-CoA syntha...

متن کامل

Skeletal muscle triglyceride. An aspect of regional adiposity and insulin resistance.

Recent evidence derived from four independent methods indicates that an excess triglyceride storage within skeletal muscle is linked to insulin resistance. Potential mechanisms for this association include apparent defects in fatty acid metabolism that are centered at the mitochondria in obesity and in type 2 diabetes. Specifically, defects in the pathways for fatty acid oxidation during postab...

متن کامل

Improved insulin sensitivity after weight loss and exercise training is mediated by a reduction in plasma fatty acid mobilization, not enhanced oxidative capacity.

Obesity is characterized by excessive rates of plasma fatty acid mobilization and uptake, which play a key role in mediating insulin resistance. While weight loss via diet-only or a diet + exercise program clearly improves insulin sensitivity, the precise mechanisms modulating this improvement are not completely understood. The purpose of the present study was to determine the role of the reduc...

متن کامل

Skeletal muscle fatty acid metabolism in association with insulin resistance, obesity, and weight loss.

The current study was undertaken to investigate fatty acid metabolism by skeletal muscle to examine potential mechanisms that could lead to increased muscle triglyceride in obesity. Sixteen lean and 40 obese research volunteers had leg balance measurement of glucose and free fatty acid (FFA) uptake (fractional extraction of [9,103H]oleate) and indirect calorimetry across the leg to determine su...

متن کامل

Artificial selection for high-capacity endurance running is protective against high-fat diet-induced insulin resistance.

Elevated oxidative capacity, such as occurs via endurance exercise training, is believed to protect against the development of obesity and diabetes. Rats bred both for low (LCR)- and high (HCR)-capacity endurance running provide a genetic model with inherent differences in aerobic capacity that allows for the testing of this supposition without the confounding effects of a training stimulus. Th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • FASEB journal : official publication of the Federation of American Societies for Experimental Biology

دوره 13 14  شماره 

صفحات  -

تاریخ انتشار 1999